http://projecteuler.net/problem=9
Problem:
Problem:
A Pythagorean triplet is a set of three natural numbers, a b c, for which,
a2 + b2 = c2
For example, 32 + 42 = 9 + 16 = 25 = 52.
There exists exactly one Pythagorean triplet for which a + b + c = 1000.
Find the product abc.
Find the product abc.
Answer:
(200*200) + (375*375)) == (425 * 425)
40000 + 140625 = 180625
200 + 375 + 425 = 1000
Solution:
#!/usr/bin/perl -w
use strict;
my ($a,$b,$c,$ulimit);
$ulimit=1000;
print "Pythogon triplets \n";
for ($a=1;$a<=$ulimit;$a++) {
for ($b=1;$b<=$ulimit;$b++ ) {
if ($a < $b ) {
for ($c=1; $c<=$ulimit;$c++) {
if ( $b < $c ) {
if ( (($a*$a) + ($b*$b)) == ($c * $c) ) {
print " ($a*$a) + ($b*$b)) == ($c * $c) \n";
my $aa=$a*$a;
my $bb=$b*$b;
my $cc=$c*$c;
print " $aa + $bb = $cc \n";
if ( ($a + $b + $c) == 1000 ) {
print "FOUND: $a + $b + $c = 1000 \n";
exit(0);
}
}
}
}
}
}
}
No comments:
Post a Comment